
CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Münster, Germany
July 5 – 12, 2003

Page 1 of 4 GER Day 1: hanoi

Input File: hanoi.in 100 Points
Output File: hanoi.out Time limit: 3 s
Source File: hanoi.pas/.c/.cpp Memory limit: 16 MB

Solution

First subtask: destination pile

The first subtask is quite simple, because it is always optimal to leave discN (the largest disc) on the
pile on which it lies at the beginning. Otherwise, one would have to move discN source pile to some
other pile that must be free at that time. This move would then not change the state of the game (aside
from pile renumbering) and thus can’t be a part of an optimal solution. From here on, we will denote
that destination piledest.

Second subtask: number of moves

A basic algorithmic approach can be derived from a number of simple observations about the problem:

Obs. 1 When moving disci, the position of all larger discsN,N − 1, . . . , i + 1 does not matter. In
particular, if discsN,N − 1, . . . , i already lie ondest, it never makes sense to move any one
of them again, because there is no move that would be made possible by them being located on
any other pile.

Obs. 2 In order to move disci to its final location ondest, all discsN,N − 1, . . . , i + 1 must already
be present. Therefore, the discs must be moved to there final location in decreasing size.

Obs. 3 If discsN,N − 1, . . . , i + 1 already lie ondest, all discsi− 1, . . . , 1 must not lie on the same
pile as disci, and also not on piledest due to the move rules. Therefore, they must first be
moved to the other pile.

All these restrictions directly leed to the following recursive algorithm:

1 p r o c e d u r e moveDisc (d i sc , d s t P i l e) :
2 s r c P i l e : = p i l e O f D i s c [d i s c] ;
3 a u x P i l e : = 1 + 2 + 3 − s r c P i l e − d s t P i l e ;
4 f o r o t h e r D i s c : = d i s c − 1 downto 1 do beg in
5 moveDisc (o the rD i sc , a u x P i l e) ;
6 end
7 numMoves : = (numMoves + 1) MOD 1000000 ;
8 p i l e O f D i s c [d i s c] : = d s t P i l e ; / / d i r e c t move

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Münster, Germany
July 5 – 12, 2003

Page 2 of 4 GER Day 1: hanoi

9 end
10
11 / / main :
12 numMoves : = 0 ;
13 f o r d i s c : = N−1 downto 1 do beg in
14 moveDisc (d i sc , p i l e O f D i s c [N])
15 end ;
/ / numMoves now c o n t a i n s t h e s o l u t i o n

From the observations above, it should be obvious that this algorithm generates the right order of
moves. However, it is also quite apparent that it is not yet fast enough. The numbernumMoves
of moves is never increased by more than one, so the proceduremoveDisc is obviously called
once for each move. Because it is widely known that the number of moves in a Hanoi games grows
exponentially withO(2N), the runtime will be at leastO(2N), which is far too much becauseN ≤
100.000.

As most contestants do probably already know and is also suggested by the problem statement, it
requires exactly2i − 1 moves to move discsi, i− 1, . . . 1 from one pile to another (same piles for all
discs). Therefore, instead of carrying out all these2i − 1 moves individually, we can directly move
thesei discs to the destination pile and increase the number of moves by2i − 1.

When we move disci to a pile X, we do it either to move out of the way for a larger disc or because
X is the destination pile,dest. In both cases we want to move all smaller discsi − 1, i − 2, . . . , 1 to
X subsequently. In the proceduremoveDisc , all these smaller discs lie on the same pile after line
6. Because they will be moved todstPile anyway, we can changemoveDisc to a new procedure
moveDiscs that moves them, too, and exploits their ordering to directly calculate the number of
moves necessary. This leads to the following improved solution:

1 / / moves a l l d i s c s 1 , 2 , . . . , maxDisc t o d s t P i l e
2 p r o c e d u r e moveDiscs (maxDisc , d s t P i l e) :
3 s r c P i l e : = p i l e O f D i s c [maxDisc] ;
4 a u x P i l e : = 1 + 2 + 3 − s r c P i l e − d s t P i l e ;
5 i f maxDisc < 1 then r e t u r n ;
6 i f (s r c P i l e = = d s t P i l e) t hen beg in
7 moveDiscs (maxDisc−1 , d s t P i l e)
8 end
9 e l s e beg in

10 moveDiscs (maxDisc−1 , a u x P i l e) ;
11 / / now maxDisc can be moved d i r e c t l y from s r c P i l e t o
12 / / d s t P i l e (one move) , and a l l s m a l l e r d i s c s can be
13 / / moved from a u x P i l e t o d s t P i l e (2 ˆ maxDisc− 1 moves)
14 // −−> 2ˆ maxDisc moves i n t o t a l

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Münster, Germany
July 5 – 12, 2003

Page 3 of 4 GER Day 1: hanoi

15 f o r i : = 1 t o maxDisc do p i l e O f D i s c [i] : = d s t P i l e ;
16 numMoves : = (numMoves + powerOfTwo (d i s c)) MOD 1000000 ;
17 end
18 end
19
20 / / main :
21 numMoves : = 0 ;
22 moveDiscs (N−1 , p i l e O f D i s c [N]) ;

In this improved version, the proceduremoveDiscs never calls itself more than once. More
precisely, it can be easily seen that the procedure is called exactly once for eachmaxDisc value
N,N − 1, . . . , 1, i.e. N times in total. For each recursion depth, the runtime isO(N) on average
due to thefor loop in line 15. After linear preprocessing and storing the powers of two in an array,
they can be calculated in constant time. Of course they should also be calculated modulo106 to avoid
integers larger than 32bit. Thus the total runtime of this algorithm isO(N2), fast enough for the first
twelve testcases.

By explicitely testing whether discs1, . . . , i that are to be moved all lie on the same pile with afor
loop, one can also achieve aO(N3) solution that will solve the first six to eight test cases. However,
this alternative solution has been omitted here.

However, we can still improve theO(N2) solution to achieve a linear time solution. To achieve
this, one needs to notice that the loop in line 14 is completely unncessary and can be omitted. This
is because the values ofpileOfDisc[] that are written in this loop are never read. Thepile-
OfDisc[] values are only readbeforethe recursive calls, so it does not matter whether they are
changed during or after these cals. Because we are only interested in the number of required moves
and we know that all discs will lie on the destination pile in the end, anyway, this update of the discs’
positions can be omitted. Because this loop is the only thing that consumed more than constant time
within the proceduremoveDiscs , and because this procedure is only calledN times, this will yield
a O(N) solution. Obviously no solution can be better (except for a constant factor) because reading
the source file already takesO(N) time1, and writing the source file also takesO(N) time because
the solution number is on averageO(2N), i.e. O(N) digits long.

TheO(N) solution is:

1 / / moves a l l d i s c s 1 , 2 , . . . , maxDisc t o d s t P i l e
2 p r o c e d u r e moveDiscs (maxDisc , d s t P i l e) :
3 s r c P i l e : = p i l e O f D i s c [maxDisc] ;
4 a u x P i l e : = 1 + 2 + 3 − s r c P i l e − d s t P i l e ;
5 i f maxDisc < 1 then r e t u r n ;
6 i f (s r c P i l e = = d s t P i l e) t hen beg in

1Or evenO(N log N) because the length of the numbers isO(log N) digits.

CENTRAL EUROPEAN OLYMPIAD IN INFORMATICS

Münster, Germany
July 5 – 12, 2003

Page 4 of 4 GER Day 1: hanoi

7 moveDiscs (maxDisc−1 , d s t P i l e)
8 end
9 e l s e beg in

10 moveDiscs (maxDisc−1 , a u x P i l e) ;
11 / / now d i s c maxDisc can be moved d i r e c t l y from s r c P i l e
12 / / t o d s t P i l e (one move) , and a l l s m a l l e r d i s c s can be
13 / / moved from a u x P i l e t o d s t P i l e (2 ˆ maxDisc− 1 moves)
14 // −−> 2ˆ maxDisc moves i n t o t a l
15 numMoves : = (numMoves + powerOfTwo [d i s c]) MOD 1000000 ;
16 end
17 end
18
19 / / main :
20 numMoves : = 0 ;
21 powerOfTwo [0] : = 1 ;
22 f o r i : = 1 t o N
23 do powerOfTwo [i] : = (2 ∗ powerOfTwo [i−1]) MOD 1000000 ;
24 moveDiscs (N−1 , p i l e O f D i s c [N]) ;

