
Day 1 Hex

 Last updated 12/6/97 (version 3) Page 1 of 2

The Game of Hex
The aim of the game is for the first player to connect a hex counter
owned by her on column 1 to a hex counter owned by her on
column N.

Rules of Hex:
Hex is a two player strategy game played on a NxN rhombus of
hexagons, as illustrated here for N=6.

1. The two players of the game are your program and the
evaluation library.

2. Your program always has the first move.
3. Players alternately place hex counters on the board.
4. A hex counter may be placed at any open position on the

board.
5. Two hexagons are adjacent if they share an edge.
6. Hex counters on adjacent hexagons of the same player

(contestant next to contestant, or evaluator next to evaluator)
are connected.

7. Connectivity is transitive (and commutative): if hex1 is
connected to hex2 and hex2 is connected to hex3 then hex3 is
connected to hex1 and hex1 is connected to hex3.

Task:
• You are required to write a program which plays the game of

Hex.
• The goal of the first player (your program) is to connect a hex

counter of yours on column 1 to a hex counter of yours on
column N.

• The other player (evaluator’s program) attempts to connect
an evaluator’s hex counter on row 1 to an evaluator’s hex
counter on row N.

• If your program plays optimally, it will always win.

Input and Output:
Your program must not read from or write to any files. Your
program must not receive keyboard input, and must not produce
output on the screen. It will receive all its input from the
functions in the hex library. The library will produce an output
file named HEX.OUT; you should ignore its contents.

At the start of the game your program will be presented with a
board that may have hex counters already placed, representing a
state of a game such that the first player may still win. Your
program must use the functions GetMax and LookAtBoard to
determine the state of the board.
At the start of the game, an equal number of hexes belongs to the
evaluation program and your program.

Constraints:
1. The size of the board will always be in the range 1 to 20

inclusive.
2. Your program may have to make up to 200 moves to

complete a game. The entire game must be finished within
40 seconds. It is guaranteed that the evaluation library will
complete its processing within 20 seconds.

Library:
A library called HexLib is provided which you must link to your
code. An example file, for each programming language, showing
how this is done is included in the task directory. These files are
TESTHEX.CPP, TESTHEX.C, TESTHEX.PAS, and
TESTHEX.BAS. If you are using QuickBasic you must include
the library by typing
QB /L HEXLIB
The functions in HexLib are:
(in order of Pascal, C/C++ and Basic respectively)

function LookAtBoard (row, column: integer): integer;
int LookAtBoard (int row, int column);
declare function LookAtBoard cdecl (byval x as integer, byval y

as integer)
Returns

–1 if row<1 or row>N or column<1 or column>N
 0 if there is no hex counter at the position
 1 if the hex counter at the specified position belongs to
 your program (player 1)
 2 if the hex counter at the specified position belongs to
the
 evaluation library (player 2)

procedure PutHex (row, column: integer);
void PutHex (int row, int column);
declare sub PutHex cdecl (byval x as integer, byval y as integer)
Places a contestant’s hex counter at the specified row and column
if the position is not occupied.

function GameIsOver: integer;
int GameIsOver (void);
declare function GameIsOver cdecl ()
Returns one of the following integers

0 the game is not over.
1 every position on the board is occupied by a hex
counter.
2 your program has won.
3 the evaluation library has won.

procedure MakeLibMove;
void MakeLibMove(void);
declare sub MakeLibMove cdecl ()
Allows the evaluation library to calculate its next move and places
its hex counter on the board. The change to the board will be
indicated by LookAtBoard and the other functions.

function GetRow: integer;
int GetRow (void);
declare function GetRow cdecl ()
Returns the row of the hex counter placed by the evaluation
library, or –1 if no hex counter has been placed yet. This function
always returns the same value until your program calls
MakeLibMove again.

function GetColumn: integer;
int GetColumn (void);

Day 1 Hex

 Last updated 12/6/97 (version 3) Page 2 of 2

declare function GetColumn cdecl ()
Returns the column of the last hex counter placed by the
evaluation library, or –1 if no hex counter has been placed yet.
This function always returns the same value until your program
calls MakeLibMove again.

function GetMax: integer;
int GetMax (void);
declare function GetMax cdecl ()
Returns the size of the board, N.

Scoring:
• If your program wins a game, it will score full marks for that

data set.
• If your program loses a game, it will score 20% for that data

set.
• If your program terminates before the end of a game or runs

out of time, it will score 0 for that data set.

Day 1 Mars

 Last updated 12/6/97 (version 3) Page 1 of 2

Mars explorer

In a future mission to Mars, a pod,
containing a number of Mars exploration
vehicles (MEVs), will be landing on the
surface of Mars. All the MEVs will be
released at the pod’s landing site, from
which they will move towards a transmitter
that has landed a short distance away.
While the vehicles move towards the
transmitter, they are required to gather rock
samples. A rock may only be gathered
once, by the first MEV to visit the rock.
After that, the rock may not be gathered
again, but other MEVs may pass the same
position.

The vehicles cannot move onto rough
terrain.

The design of the vehicle is such that it can
only move south or east in a path that
follows the grid pattern from the pod to the
transmitter. More than one MEV may
occupy the same position at the same time.

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 0 0 0
0 0 0 1 0 2 0 0 0 0
1 1 0 1 2 0 0 0 0 1
0 1 0 0 2 0 1 1 0 0
0 1 0 1 0 0 1 1 0 0
0 1 2 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

Warning: If a MEV cannot continue to
move legally before arriving at the
transmitter, its samples are irrevocably lost.

Task:

Calculate the individual movement of the
vehicles to maximise your score by
maximising the number of rock samples
collected and taken to the transmitter and
the number of MEVs that reach the
transmitter.

Input:

The surface of the planet between the pod
and the transmitter is represented by a P by
Q grid with the pod position always at (1,1)
and the transmitter located at
(P, Q). The definitions of the different types
of terrain are as follows:

• Clear terrain: 0
• Rough terrain:1
• Rock sample: 2

Pod

Transmit

Row

W

S

E

N

 Row

Day 1 Mars

 Last updated 12/6/97 (version 3) Page 2 of 2

The input file consists of:

NumberOfVehicles
P
Q
(X1Y1) (X2Y1) (X3Y1)...(XP-1Y1) (XPY1)
(X1Y2) (X2Y2) (X3Y2)...(XP-1Y2) (XPY2)
(X1Y3) (X2Y3) (X3Y3)...(XP-1Y3) (XPY3)
...
(X1YQ-1) (X2YQ-1) (X3YQ-1)...(XP-1YQ-1)
(XPYQ-1)
(X1YQ) (X2YQ) (X3YQ)...(XP-1YQ) (XPYQ)

P and Q are the size of the grid, and
NumberOfVehicles is an integer less than
1000, representing the number of vehicles
released by the pod. Q lines each represent
a row in the surface representation. P and Q
will not exceed 128.

Sample input:

MARS.DAT Explanation:
2 Number of vehicles
10 P
8 Q
0 0 0 0 0 0 0
0 0 0

Row 1

0 0 0 0 0 1 1
0 0 0

Row 2

0 0 0 1 0 2 0
0 0 0

Row 3

1 1 0 1 2 0 0
0 0 1

Row 4

0 1 0 0 2 0 1
1 0 0

Row 5

0 1 0 1 0 0 1
1 0 0

Row 6

0 1 2 0 0 0 0
1 0 0

Row 7

0 0 0 0 0 0 0
0 0 0

Row 8

Day 1 Mars

 Last updated 12/6/97 (version 3) Page 3 of 2

Output:

A sequence of lines representing the
movements of the MEVs towards the
transmitter. Each line contains a vehicle
number and a digit 0 or 1, where 0 is a
move South and 1 a move East.

Sample output:

MARS.O
UT

Explanation:

1 1 vehicle 1 moves east
1 0 vehicle 1 moves south
2 1 vehicle 2 moves east
2 0 vehicle 2 moves south
1 1 etc.
1 1
2 0
2 1
2 0
2 0
2 0
2 0
1 1
1 0
1 0
1 0
1 0
1 0
1 0
2 0
2 1
1 1
1 1
1 1
1 1
1 1
2 1
2 1
2 1
2 1
2 1

2 1

2 MEVs and 3 samples reach the transmitter for a score
of 5 points out of a possible 5. Thus 100% score.

Day 1 Mars

 Last updated 12/6/97 (version 3) Page 4 of 2

Scoring:

The calculation of the score will be based
on the number of samples collected and
taken to the transmitter, with adjustments
made for the arrival or non-arrival of MEVs
at the transmitter.

• An illegal move invalidates a solution
set and is scored as zero points. An
illegal move occurs when a MEV is
moved over rough terrain or outside the
grid.

• Score = (number of samples collected
and taken to the transmitter + number of
MEVs reaching the transmitter
– number of MEVs not reaching the
transmitter) as a % of the maximum
possible score for the solution set.

• A maximum of 100% and a minimum of
0% can be scored.

Day 1 Toxic

 Last updated 12/6/97 (version 3)

The Toxic iShongololo
“iShongololo” is the Zulu name for a millipede. They
are long, shiny, black arthropods with many legs.

The iShongololo eats through an edible “fruit” which
for the sake of this problem can be considered a
rectangular solid with integer dimensions of L (length),
W (width) and H (height).

Task:

You are required to write a program that maximizes the
number of blocks eaten by the iShongololo without
violating the constraints given. The program must
output the actions that the iShongololo makes as it eats
its way through the fruit.

The iShongololo starts outside the fruit. The first block
the iShongololo must eat is 1, 1, 1 and it must then
move to this block. It stops when no more blocks can be
legally eaten and it can no longer move.

Constraints:

1. The iShongololo occupies exactly one empty block.
2. The iShongololo can only eat one complete block at

a time.
3. The iShongololo cannot move to a position where it

has previously moved to (that is, move backwards or
cross its path).

4. The iShongololo cannot move to a solid (uneaten)
block, or outside the fruit.

5. The iShongololo may only move to or eat blocks
with whom it shares a face. It may only eat blocks
which have no other faces exposed to empty eaten
blocks.

Input:

As input your program will receive three numbers
(integers) which are the length (L), width (W) and
height (H) of the solid.

The three integers L, W, H, are each on a separate line.
The three integers will be between 1 and 32 (inclusive).

Sample input:
TOXIC.DAT Explanation:
2
3
2

Length of solid is 2.
Width of solid is 3.
Height of solid is 2.

Output:

The output consists of lines that begin with “E” (eat) or
“M” (move) followed by 3 integers that represent the
block eaten or moved to on the axes corresponding to L,
W, H.
For example the following is a valid solution for the
input example.

Sample output (this may not be optimal):
TOXIC.OUT Explanation:
E 1 1 1
M 1 1 1
E 2 1 1
E 1 1 2
E 1 2 1
M 1 2 1
E 1 3 1
M 1 3 1
E 2 3 1
E 1 3 2
M 1 3 2

Eat the block 1 1 1
Move to the block 1 1 1
Eat the block 2 1 1
Eat the block 1 1 2
Eat the block 1 2 1
Move to the block 1 2 1
Eat the block 1 3 1
Move to the block 1 3 1
Eat the block 2 3 1
Eat the block 1 3 2
Move to the block 1 3 2

Scoring:

• If the iShongololo violates the constraints, then
your solution receives 0 points.

• The total score is the percentage of blocks eaten as
a proportion of our best known solution.

• A solution cannot score more than 100%.

