
Day 2 Image

 Last updated 12/6/97 (version 2)

Character Recognition

This problem requires you to write a
program that performs character
recognition.

Details:

Each ideal character image has 20 lines of
20 digits. Each digit is a ‘0’ or a ‘1’. See
Figure 1a for the layout of character images
in the file.

The file FONT.DAT contains
representations of 27 ideal character images
in this order:

oabcdefghijklmnopqrstuvwxyz

where o represents the space character.

The file IMAGE.DAT contains one or more
potentially corrupted character images. A
character image might be corrupted in these
ways:
• at most one line might be duplicated

(and the duplicate immediately follows)
• at most one line might be missing
• some ‘0’s might be changed to ‘1’s
• some ‘1’s might be changed to ‘0’s.
No character image will have both a
duplicated line and a missing line. No more
than 30% of the ‘0’s and ‘1’s will be
changed in any character image in the
evaluation datasets.

In the case of a duplicated line, one or both
of the resulting lines may have corruptions,
and the corruptions may be different.

Task:

Write a program to recognise the sequence
of one or more characters in the image
provided in file IMAGE.DAT using the font
provided in file FONT.DAT.

Recognise a character image by choosing
the font character images that require the
smallest number of overall changed ‘1’s
and ‘0’s to be corrupted to the given font
image, given the most favourable
assumptions about duplicated or omitted
lines. Count corruptions in only the least
corrupted line in the case of a duplicated
line. All characters in the sample and
evaluation images used are recognisable
one-by-one by a well-written program.
There is a unique best solution for each
evaluation dataset.

A correct solution will use precisely all of
the data supplied in the IMAGE.DAT input
file.

Input:

Both input files begin with an integer N
(19 ≤ N ≤ 1200) that specifies the number
of lines that follow:

N
(digit1)(digit2)(digit3) … (digit20)
(digit1)(digit2)(digit3) … (digit20)
…

Each line of data is 20 digits wide. There
are no spaces separating the zeros and ones.

The file FONT.DAT describes the font.
FONT.DAT will always contain 541 lines.
FONT.DAT may differ for each evaluation
dataset.

Day 2 Image

 Last updated 12/6/97 (version 2)

Output:

Your program must produce a file
IMAGE.OUT, which contains a single
string of the characters recognised. Its
format is a single line of ASCII text. The
output should not contain any separator
characters. If your program does not
recognise a particular character, it must
output a ‘?’ in the appropriate position.

Caution: the output format specified above
overrides the standard output requirements
specified in the rules, which require
separator spaces in output.

Scoring:

The score will be given as the percentage of
characters correctly recognised.

SEE OTHER SIDE FOR SAMPLES.

Sample files:

Incomplete sample
showing the
beginning of
FONT.DAT (space and
‘a’).

Sample IMAGE.DAT,
showing an ‘a’
corrupted

FONT.DAT IMAGE.DAT
540
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000011100000000000
00000111111011000000
00001111111001100000
00001110001100100000
00001100001100010000
00001100000100010000
00000100000100010000
00000010000000110000
00000001000001110000
00001111111111110000
00001111111111110000
00001111111111000000
00001000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000

19
00000000000000000000
00000000000000000000
00000000000000000000
00000011100000000000
00100111011011000000
00001111111001100000
00001110001100100000
00001100001100010000
00001100000100010000
00000100000100010000
00000010000000110000
00001111011111110000
00001111111111110000
00001111111111000000
00001000010000000000
00000000000000000000
00000000000001000000
00000000000000000000
00000000000000000000

Figure 1a Figure 1b

Sample output:

IMAGE.O
UT

Explanation

a Recognised the single
character ‘a’

Figure 2

Day 2 Maps

 Last updated 12/6/97 (version 2)

Map labelling
You are a cartographer's assistant, and have been given the
difficult task of writing the names of cities onto a new map.

The map is a grid of 1000 x 1000 cells. Each city occupies
a single cell on the map. City names are to be placed on the
map in rectangular boxes of cells. Such boxes are called
labels.

Fig. 1: A city with the four possible positions of its label

The placement of labels must satisfy the following
constraints:
1. A city’s label must appear in one of four positions with

respect to the city as illustrated in figure 1.
2. Labels must not overlap each other.
3. Labels must not overlap cities.
4. Labels must completely fit on the map.

Each label contains all the letters in a city name plus a
single space. For each city name the width and height of its
letters will be given; the single space has the same size.

4 L a n g a q
3 nn nn
2

Pa a r l q1 nn
0 q C e r e s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

q represents a space
nn represents the position of a city

Fig. 2: Section of a map

The leftmost column of the map has horizontal index 0 and
the bottom row has vertical index 0. Figure 2 shows the
bottom left section of a map for the cities Langa at (0,3),
Ceres at (6,1) and Paarl at (7,3). All the labels are validly
placed, but this is not the only valid placement.

Task:
Your program must read the locations of the cities on the
map, followed by their letter dimensions and names. The
program must then place as many labels on the map as it
can without violating the constraints above, and output the
locations of the labels that have been placed.

Input:
The input file starts with a line containing an integer (N)
giving the number of cities on the map. For each city there
is an input line with
• the city’s horizontal index (X) ,
• the city’s vertical index (Y),
• the integer width (W) for each character in the city

name,
• the integer height (H) for each character in the city

name, and
• the city name itself.

City names are all single words. The number of cities is at
most 1000.

No city name will be longer than 200 letters.

Sample input:

MAPS.DAT Explanation
3 N=3
0 3 1 1 Langa X=0, Y=3, W=1, H=1
6 1 1 1 Ceres
7 3 1 2 Paarl

Output:
Your program is required to output N lines. Each line must
contain the horizontal index followed by the vertical index
of the top left cell of the city’s label. If your program is
unable to place a label for a city, it must output -1 -1.
These lines should be output in the same order as the cities
are given in the input file. You must put a single space
between the two numbers.

Sample output:

MAPS.OUT Explanation:
1 4 Langa’s label is at (1,4)
0 0 Ceres’s label is at (0, 0)
8 2 Paarl’s label is at (8, 2)

Scoring:
For each set of the test data:
• The score will be given as the percentage of city names

placed by your program with respect to an excellent
solution of the organisers.

• The minimum score is 0% and the maximum score is
100%.

• If any label violates the constraints, your program will
score 0.

• If labels do not match the cities given, your program
will score 0.

Day 2 Stack

 Last updated 12/6/97 (version 2) Page 1 of 2

Stacking containers

The Neptune Cargo Company operates a
container storage depot. Its container
storage depot accepts containers for storage
and subsequent removal.

Containers arrive at the depot for storage
every hour on the hour. They stay at the
depot for a positive integer number of
hours. When a container arrives, its
documentation contains the expected time
when it will be removed. The first container
arrives at time 1. The actual time a
container is requested to be removed may
ultimately be before or after the expected
time by no more than 5 hours.

In this problem, the time in hours is
expressed as an increasing positive integer
which will not exceed 150.

A crane (lifting and moving apparatus)
operates above the storage space, moves
containers in and out of the storage space,
and sometimes rearranges them inside the
storage space. The crane may operate in
space above the defined storage space.

Task:

You are required to write a program which
has a good strategy for accepting, storing
and removing containers. A good strategy is
one that minimizes the total number of
moves that the crane makes.
The depot is a rectangular space. The length
(X), width (Y) and height (Z) of the space
are made available to the program.
Each container is a 1 x 1 x 1 cube.
Containers are stacked on top of other
containers or the floor. The crane can only

move the top container of a stack.

Moving a container from one location to
any other location is always one crane
move. All crane moves take place between
container arrivals and removals. Crane
moves are instantaneous.
When the depot becomes full, your program
must refuse to accept any more containers.
Your program may become less efficient or
unable to continue when the depot is nearly
full. Your program may refuse to accept
new containers at any time.

Input:

Your program is required to interact with a
simulation module which will provide data,
and to which your program must submit
actions and messages. The depot will be
empty when your program starts.

During your program testing, the library
will return meaningful values for a small
fixed set of test data.

Each container is identified by a unique
positive integer.

Your program may call the following
functions at any time:

int GetX();
function GetX: integer;

Day 2 Stack

 Last updated 12/6/97 (version 2) Page 2 of 2

DECLARE FUNCTION GetX CDECL ()
Returns length of storage space

(integer).

int GetY();
function GetY: integer;
DECLARE FUNCTION GetY CDECL ()

Returns width of storage space
(integer).

int GetZ();
function GetZ: integer;
DECLARE FUNCTION GetZ CDECL ()

Returns height of storage space
(integer).

X,Y,Z will not exceed 32.

The following functions provide
information on the action sequence
(container arrivals and removals). The
arrivals take place on the hour, and removal
requests are received between hours. Thus,
for time-keeping purposes, each arrival
marks the passing of one hour.

int GetNextContainer();
function GetNextContainer: integer;
DECLARE FUNCTION
GetNextContainer CDECL ()

Returns a positive integer container
number of the next container to be
stored or retrieved. If there are no
more containers to be stored or
retrieved, returns 0, indicating your
program should terminate, even if
containers are still in the warehouse.

int GetNextAction();
function GetNextAction: integer;
DECLARE FUNCTION GetNextAction

CDECL ()
Returns an integer representing the
action to take: 1 to store a new
container, 2 to remove a container.

Day 2 Stack

 Last updated 12/6/97 (version 2) Page 3 of 2

int GetNextStorageTime();
function GetNextStorageTime: integer;
DECLARE FUNCTION
GetNextStorageTime CDECL ()

Returns time in hours (since the start)
when the container is expected to be
removed. This value is for planning
purposes for your program; the actual
removal request might come at a
slightly different time, which will
differ by not more than 5 hours. This
function only returns a meaningful
value when GetNextAction returns 1.

The order in which the above three
functions is called does not matter.

Consecutive calls to GetNextContainer,
GetNextAction and GetNextStorageTime
will always return information about the
same container until the container is
refused, stored or removed, at which point
the above functions will return information
about the next container.

Output:

Once your program has found out the
information it needs about the next
container, use the following functions to
manipulate the storage depot:

int MoveContainer(int x1, int y1, int x2,
int y2);
function MoveContainer(x1, y1, x2, y2:
integer): integer;
DECLARE FUNCTION MoveContainer
CDECL (BYVAL x1 AS INTEGER,
BYVAL y1 AS INTEGER, BYVAL x2 AS
INTEGER, BYVAL y2 AS INTEGER)

Move the container on the top of the

stack at x1, y1 to the top of the stack
at x2, y2.
Returns 1 if the action is valid, 0 if
the action is illegal (i.e. impossible).

void RefuseContainer();
procedure RefuseContainer;
DECLARE SUB RefuseContainer
CDECL ()

Refuse to accept the incoming
container.

void StoreArrivingContainer(int x, int y);
procedure StoreArrivingContainer(x, y:
integer);
DECLARE SUB StoreArrivingContainer
CDECL (BYVAL x AS INTEGER,
BYVAL y AS INTEGER)

Store the incoming container at the
top of the stack at position x, y.

void RemoveContainer(int x, int y);
procedure RemoveContainer(x, y:
integer);
DECLARE SUB RemoveContainer
CDECL (BYVAL x AS INTEGER,
BYVAL y AS INTEGER)

Remove the container on the top of
the stack at x, y from the depot.

Day 2 Stack

 Last updated 12/6/97 (version 2) Page 4 of 2

If your program cannot carry out the
required action, it should terminate.

Illegal moves are ignored by the library, and
have no effect on the simulation state or
scoring.

Your program is NOT required to write any
output to a file. The library with which your
program interacts will write a log file of
actions. This file is used for evaluation.

Sequencing:

Your program should get information about
the next container request. It should then
move containers with the crane if desired
and subsequently store, remove or refuse
the action request.

Library:

A library called StackLib is provided which
you must link to your code.
The standard C and C++ libraries contain
this library and will automatically be linked
to your program when you include the
appropriate header file.
If you are using QuickBasic you must
include the library by typing
QB /L STACKLIB

Sample source code files are present in the
task directory named TESTSTK.BAS,
TESTSTK.PAS, TESTSTK.CPP, and
TESTSTK.C.

Scoring:
The program will be tested with several data sets and for
each data set, its performance will be scored against the
most efficient solution known to us, using the following
indicators:

• Total number of crane moves by your program.
• A penalty of 5 moves is imposed for every container

refused.
• A penalty of 5 moves is imposed for each container not

stored and removed (i.e. if the program terminates
normally before the entire operation is complete).

• The total score will be calculated relative to the best
known solution.

• If the program makes more than twice
the number of operations necessary, it
scores 0.

• The minimum score is 0%, and the
maximum score is 100%.

