Task: PER
 Permutation

Stage III. Day two. Source file per.*
03.04.2008 Available memory: $\mathbf{3 2} \mathbf{~ M B}$.

Multiset is a mathematical object similar to a set, but each member of a multiset may have more than one membership. Just as with any set, the members of a multiset can be ordered in many ways. We call each such ordering a permutation of the multiset. For example, among the permutations of the multiset $\{1,1,2,3,3,3,7,8\}$ there are $(2,3,1,3,3,7,1,8)$ and $(8,7,3,3,3,2,1,1)$.

We will say that one permutation of a given multiset is smaller (in lexicographic order) than another permutation, if on the first position that does not match the first permutation has a smaller element than the other one. All permutations of a given multiset can be numbered (starting from one) in an increasing order.

Task

Write a programme that

- reads the description of a permutation of a multiset and a positive integer m from the standard input,
- determines the remainder of the rank of that permutation in the lexicographic ordering modulo m,
- writes out the result to the standard output.

Input

The first line of the standard input holds two integers n and $m(1 \leq n \leq 300000,2 \leq m \leq 1000000000)$, separated by a single space. These denote, respectively, the cardinality of the multiset and ... the number m. The second line of the standard input contains n positive integers $a_{i}\left(1 \leq a_{i} \leq 300000\right)$, separated by single spaces and denoting successive elements of the multiset permutation.

Output

The first and only line of the standard output is to hold one integer, the remainder modulo m of the rank of the input permutation in the lexicographic ordering.

Example

For the input data: the correct result is:
41000 5

21102
All the permutations smaller (with respect to lexicographic order) than the one given are: $(1,2,2,10)$, $(1,2,10,2),(1,10,2,2)$ and $(2,1,2,10)$.

