
XXXIII OI, zawody II stopnia – Usuwanie usterek z rozwiązań

Przetestowanie swojego rozwiązania przed wysłaniem jest bardzo ważne, ponieważ dzięki temu
można wykryć błędy, których wpływ na ocenę będzie widoczny dopiero po odsłonięciu wyników.
Przemyślane testowanie pomaga też zlokalizować błędy w programie.

Poniżej przedstawiamy różne możliwości usuwania usterek z rozwiązań dostępne podczas za-
wodów II stopnia, a także na większości komputerów z systemem Linux. Jeśli nie masz w domu
do dyspozycji komputera z systemem Linux, możesz spróbować przetestować wybrane funkcje w
trakcie dnia próbnego albo na Windowsowych wersjach opisanych programów (choć te drugie mogą
działać trochę inaczej). Zaznaczamy tylko, że Jury w trakcie zawodów II stopnia nie będzie mogło
udzielać żadnych wskazówek na temat wymienionych poniżej metod.

Jeśli masz jakieś sugestie co do jego zawartości, napisz do nas na olimpiada@oi.edu.pl lub
skontaktuj się z nami przez dział „Pytania” podczas II etapu.

1 Kompilacja w C++
Jeśli chcemy przetestować swoje rozwiązanie, warto w poleceniu kompilacji umieścić dodatkowe
flagi -Wall -Wextra -pedantic, dzięki czemu „poprosimy” kompilator, aby zwrócił nam uwagę
na usterki w naszym kodzie. Większość zgłaszanych przez kompilator usterek może powodować
błędne działanie programu, dlatego warto ich nie ignorować lub – jeśli tak – robić to w pełni
świadomie.

Kolejną ważną flagą jest flaga -g3 (rozszerzona wersja flagi -g), która dołączy do pliku binar-
nego specjalne symbole ułatwiające debuggowanie kodu (patrz kolejne sekcje). Więcej o flagach
debuggingowych:
file:///usr/local/share/doc/gcc-14-doc/gcc.html#Debugging-Options – link lokalny
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

A co z optymalizacją (flaga -O3)? Optymalizacje często utrudniają debuggowanie kodu, więc
na potrzeby debuggowania rozwiązania najczęściej warto je wyłączyć. Warto jednak pamiętać, że
włączenie optymalizacji może powodować częstsze ujawnianie się błędów w kodzie. Jest też bardzo
przydatne przy profilowaniu (patrz sekcja o valgrind). Więcej o optymalizacjach:
file:///usr/local/share/doc/gcc-14-doc/gcc.html#Optimize-Options – link lokalny
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

Flaga -static może powodować wykrywanie błędów w programach ich pozbawionych (za-
wsze i głównie przez program valgrind). Dlatego (w dużym uproszczeniu) można tę flagę pominąć
na potrzeby testowania programu, o ile ona nie jest źródłem błędów wykonania programu.

Istnieją jeszcze dwie bardzo przydatne flagi, choć nie polecamy ich mieszać z opisanymi niżej
sposobami analizy programów – powinny one być używane zupełnie niezależnie od nich. Pierw-
sza z nich to -fsanitize=address, która powoduje dodanie do programu kodu wykrywającego
błędne obchodzenie się z adresami. Po skompilowaniu programu z użyciem tej flagi normalnie go
uruchamiamy – jeśli problem zostanie wykryty, to dodany kod przerwie jego działanie i wypisze
stosowną informację. Druga to -fsanitize=undefined, która działa analogicznie do poprzedniej,
ale wykrywa miejsca, w których program może zachowywać się w nieprzewidywalny sposób. Ko-
lejna polecana flaga to -D_GLIBCXX_DEBUG. Więcej o takich flagach w gcc:
file:///usr/local/share/doc/gcc-14-doc/gcc.html#Instrumentation-Options – link lokalny
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

2 valgrind
valgrind to potężne narzędzie służące m.in. do wykrywania błędów i profilowania programów.
Poniżej skupimy się tylko na jego najprostszych zastosowaniach.

1/4

file:///usr/local/share/doc/gcc-14-doc/gcc.html#Debugging-Options
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
file:///usr/local/share/doc/gcc-14-doc/gcc.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
file:///usr/local/share/doc/gcc-14-doc/gcc.html#Instrumentation-Options
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html


XXXIII OI, zawody II stopnia – Usuwanie usterek z rozwiązań

Jeśli skompilujemy program zgodnie z wyżej opisanymi wytycznymi (bez flagi -static), a na-
stępnie napiszemy w konsoli valgrind ./program < test.in, to dostaniemy czytelną informację
o większości błędów związanych z obsługą pamięci. Warto tu jednak zaznaczyć, że jeśli stosujemy
dość popularne „zabezpieczenia” polegające na stałym rozmiarze tablic MAX_N (albo n + 10) lub
innych podobnych zabiegach, to błędy mogą zostać wykryte dopiero przy dużych testach. Zre-
zygnowanie, przynajmniej na czas testów, z takich zabezpieczeń, może istotnie wpłynąć zarówno
na jakość testów, jak i programów. Nieplanowane odwoływanie się do komórek tablicy, nawet jak
są zaalokowane, często jest symptomem znacznie poważniejszego błędu programistycznego, który
objawi się tylko przy specyficznych warunkach.

Błędy zgłaszane przez program valgrind na pewno nie należą do tych, które można lekceważyć
(poza świadomym ignorowaniem wycieków pamięci). Prawie zawsze kończą się one błędem wy-
konania programu na większych testach lub po prostu nieprzewidywalnym działaniem programu.
Zazwyczaj to właśnie tego typu błędy są winne sytuacji, w której program działa różnie w różnych
środowiskach uruchomienia (np. na różnych komputerach).

valgrind ma jeszcze dwie funkcjonalności, którym poświęcimy chwilę. Pierwsza z nich to ana-
lizowanie zużycia pamięci. Komenda valgrind --tool=massif ./program < test.in tworzy
plik massif* z analizą zużycia pamięci Twojego programu. Aby wyświetlić ją w czytelnej formie,
należy napisać ms_print, a następnie podać nazwę właśnie stworzonego pliku. Przykładowo:

$ ms_print massif.out.4313

Warto tu zaznaczyć, że ta analiza jest zazwyczaj bliska do tej, którą przeprowadzamy na
sprawdzaczkach. Nie musi być jednak ona identyczna. Ze względu na sposób zliczania pamięci na
sprawdzaczkach zazwyczaj massif wykrywa większe zużycie pamięci o kilka MB (standardowo do
8) niż sprawdzaczki. Może się jednak zdarzyć, że wykryje mniejsze zużycie niż system Olimpiady.

Do testów warto używać pesymistycznych dużych testów (choć niekoniecznie maksymalnych).
Jeśli zbyt szybko program zakończy działanie, to analiza nie będzie dokładna. Więcej informacji
z przykładami:
file:///usr/share/doc/valgrind/html/ms-manual.html – link lokalny
http://valgrind.org/docs/manual/ms-manual.html

Druga ze wspomnianych funkcjonalności narzędzia valgrind to profilowanie czasu. Pisząc
valgrind --tool=cachegrind ./program < test.in, tworzymy plik ze statystykami działania
programu (na danym teście). Można je wyświetlić, pisząc kcachegrind, a następnie podając
nazwę właśnie stworzonego pliku (domyślnie cachegrind.out.*). Na przykład:

$ kcachegrind cachegrind.out.4505

Warto tu podkreślić, że analiza jest przeprowadzana na innym systemie niż sprawdzaczkowy
(w szczególności nie ma oitimetool), więc analizy czasów mogą nie być dokładne. Niemniej, bar-
dzo wiele statystyk (jak np. liczba wywołań funkcji) będzie dobrze odpowiadać temu, jak program
będzie działał na sprawdzaczce. Więcej informacji z przykładami:
file:///usr/share/doc/valgrind/html/cl-manual.html – link lokalny
http://valgrind.org/docs/manual/cl-manual.html

2.1 Profilowanie stosu – massif
Aby użyć valgrinda do badania pamięci na stosie warto użyć dodatkowych flag informacji. Do-
kładniejsze wytłumaczenie znajduje się poniżej, a najdokładniejsze w dokumentacji, ale często
zadziała następujące polecenie:

$ valgrind --tool=massif --stacks=yes --max-stackframe=1073741824 \
--main-stacksize=1073741824 ./program < test.in

2/4

file:///usr/share/doc/valgrind/html/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
file:///usr/share/doc/valgrind/html/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html


XXXIII OI, zawody II stopnia – Usuwanie usterek z rozwiązań

Zgodnie z tym, co zostało napisane w dokumentacji, domyślnie valgrind mierzy tylko pamięć
alokowaną poprzez malloc, calloc, realloc, memalign, new, new[]. Nie mierzy zatem pa-
mięci alokowanej przez niskopoziomowe funkcje takie jak mmap, mremap i brk oraz tej używanej
na stosie.

Oczywiście, najprostszym obejściem jest przejście na używanie pamięci alokowanej dynamicznie
na przykład za pomocą kontenerów z stdliba np. std::vector<int> table_name(size) zamiast
int table_name[size].

Jeśli jednak zmniejszenie ilości pamięci używanej na stosie do pomijalnej wielkości nie jest
preferowanym rozwiązaniem, można włączyć uwzględnianie pamięci alokowanej na stosie. Służy
do tego flaga massif –stacks=yes. Zwolni to jednak istotnie czas profilowania.

$ valgrind --tool=massif --stacks=yes ./program < test.in

To jednak może nie wyświetlać całej użytej pamięci. Rozwiązaniem tej niedogodności jest
manipulowanie wartością –max-stackframe. Najczęściej wystarczy tę wartość ustawić na odpo-
wiednia dużą (w stosunku do pamięci alokowanej na stosie przez program).

$ valgrind --tool=massif --stacks=yes --max-stackframe=1073741824 \
./program < test.in

Więcej o profilowaniu stosu:
file:///usr/share/doc/valgrind/html/manual-core.html – link lokalny
http://valgrind.org/docs/manual/manual-core.html

Jeśli potrzebne jest wiele pamięci, to warto też zmienić rozmiar stosu.

$ valgrind --tool=massif --stacks=yes --max-stackframe=1073741824 \
--main-stacksize=1073741824 ./program < test.in

Więcej możliwości opisanych jest w dokumentacji. Warto tu jedynie dodać, że valgrind przyj-
muje zazwyczaj dużo założeń, jak choćby to, że na początku stos jest pusty.

3 gdb
Jeśli program kończy się błędem wykonania lub działa w nieprzewidywalny dla nas sposób oraz
wszystkie metody wykrywania błędów opisane powyżej zawiodły, warto sięgnąć po ostateczną
broń – debugger. Jest to narzędzie służące do wykonywania programów w sposób krokowy. Wiele
środowisk programistycznych posiada wbudowany debugger, często będący nakładką na jakiś nie-
zależny od środowiska; poniżej opiszemy podstawowe funkcjonalności debuggera gdb, który nie
wymaga użycia żadnego konkretnego środowiska programistycznego.

gdb ma wiele funkcjonalności, ale my skupimy się na kilku najbardziej podstawowych jego
możliwościach. Uruchamiamy go za pomocą polecenia gdb ./program (standardowo po skompi-
lowaniu z opcją typu -g), a następne komendy wpisujemy już w debuggerze. Oto (niepełna) lista
dostępnych komend:

• run < test.in – uruchamia program i przekazuje mu wskazany test na standardowe wejście
(r<test.in).

• break xx – ustawia break point na linii xx (b xx).

• break foo – ustawia break point na funkcji foo (b foo).

• step – przechodzi do następnej linii programu, przy czym wchodzi do wnętrza wywołań
funkcji (s).

3/4

file:///usr/share/doc/valgrind/html/manual-core.html
http://valgrind.org/docs/manual/manual-core.html


XXXIII OI, zawody II stopnia – Usuwanie usterek z rozwiązań

• next – przechodzi do następnej linii programu, przy czym nie wchodzi do wnętrza wywołań
funkcji (n).

• continue – wznawia działanie programu po przerwaniu (c).

• print var – wypisuje wartość zmiennej var (p var).

• backtrace – wypisuje stos wywołań funkcji (bt).

• list xx – wypisuje kawałek programu, bliski linii xx (l xx).

Po wpisaniu komendy naciskamy Enter. W nawiasach podaliśmy opcje skrócone komend. Przy-
kładowy przebieg krokowego wykonania programu po wywołaniu gdb ./program:

b main % program ma się zatrzymać po dojściu do funkcji main
r < test.in % uruchomienie na teście; program zatrzymuje się na funkcji main
n
n
...
p x % wypisuje wartość zmiennej x
s % wchodzi do wnętrza funkcji, na której znajduje się wykonanie krokowe
n
n
...

Najciekawsza z powyższych funkcji to backtrace (bt). Jej najłatwiejsze, najpopularniejsze
użycie to uruchomienie programu, poczekanie aż zakończy się błędem wykonania, i wywołanie jej,
aby dowiedzieć się gdzie i dlaczego program zakończył się błędem (albo przynajmniej w jakich
okolicznościach). Więcej można znaleźć w dokumentacji: o przerywaniu działania:
file:///usr/share/doc/gdb-doc/html/gdb/Set-Breaks.html – link lokalny
https://sourceware.org/gdb/onlinedocs/gdb/Set-Breaks.html#Set-Breaks
o krokowym wykonywaniu programu:
file:///usr/share/doc/gdb-doc/html/gdb/Continuing-and-Stepping.html – link lokalny
https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html
o backtrace:
file:///usr/share/doc/gdb-doc/html/gdb/Backtrace.html – link lokalny
https://sourceware.org/gdb/onlinedocs/gdb/Backtrace.html

Bardzo pomocne mogą się okazać watchpoints, służące do wykrywania, kiedy wartość zmien-
nej lub wartość pod konkretnym adresem ulega zmianie lub jest odczytywana. Uruchamiamy je
za pomocą komendy watch var (w skrócie w var) i kiedy wartość zmiennej var się zmienia, gdb
nas o tym informuje. Więcej na ten temat można przeczytać w dokumentacji:
file:///usr/share/doc/gdb-doc/html/gdb/Set-Watchpoints.html – link lokalny
https://sourceware.org/gdb/onlinedocs/gdb/Set-Watchpoints.html

4/4

file:///usr/share/doc/gdb-doc/html/gdb/Set-Breaks.html
https://sourceware.org/gdb/onlinedocs/gdb/Set-Breaks.html#Set-Breaks
file:///usr/share/doc/gdb-doc/html/gdb/Continuing-and-Stepping.html
https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html
file:///usr/share/doc/gdb-doc/html/gdb/Backtrace.html
https://sourceware.org/gdb/onlinedocs/gdb/Backtrace.html
file:///usr/share/doc/gdb-doc/html/gdb/Set-Watchpoints.html
https://sourceware.org/gdb/onlinedocs/gdb/Set-Watchpoints.html

	Kompilacja w C++
	valgrind
	Profilowanie stosu – massif

	gdb

