XXXIII Ol, zawody Il stopnia — Usuwanie usterek z rozwiazan

Przetestowanie swojego rozwigzania przed wyslaniem jest bardzo wazne, poniewaz dzieki temu
mozna wykryé btedy, ktérych wplyw na ocene bedzie widoczny dopiero po odstonieciu wynikow.
Przemyslane testowanie pomaga tez zlokalizowa¢ bledy w programie.

Ponizej przedstawiamy rézne mozliwosci usuwania usterek z rozwigzan dostepne podczas za-
wodow II stopnia, a takze na wiekszosci komputerow z systemem Linux. Jesli nie masz w domu
do dyspozycji komputera z systemem Linux, mozesz sprobowaé przetestowaé¢ wybrane funkcje w
trakcie dnia probnego albo na Windowsowych wersjach opisanych programéow (cho¢ te drugie moga
dziala¢ troche inaczej). Zaznaczamy tylko, ze Jury w trakcie zawodow II stopnia nie bedzie mogto
udzielaé¢ zadnych wskazéwek na temat wymienionych ponizej metod.

Jesli masz jakie§ sugestie co do jego zawartosci, napisz do nas na olimpiada®oi.edu.pl lub
skontaktuj sie z nami przez dzial ,Pytania” podczas II etapu.

1 Kompilacja w C++

Jedli chcemy przetestowaé swoje rozwigzanie, warto w poleceniu kompilacji umiesci¢ dodatkowe
flagi -Wall -Wextra -pedantic, dzieki czemu ,poprosimy” kompilator, aby zwrocit nam uwage
na usterki w naszym kodzie. Wiekszo$¢ zglaszanych przez kompilator usterek moze powodowaé
bledne dzialanie programu, dlatego warto ich nie ignorowaé lub — jesli tak — robi¢ to w pelni
$wiadomie.

Kolejna wazna flaga jest flaga -g3 (rozszerzona wersja flagi -g), ktora dotaczy do pliku binar-
nego specjalne symbole utatwiajace debuggowanie kodu (patrz kolejne sekcje). Wiecej o flagach
debuggingowych:
file:///usr/local/share/doc/gcc-14-doc/gcc.html#Debugging-Options — link lokalny
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html

A co z optymalizacja (flaga -03)? Optymalizacje czesto utrudniaja debuggowanie kodu, wiec
na potrzeby debuggowania rozwiazania najczesciej warto je wyltaczy¢. Warto jednak pamietaé, ze
wlaczenie optymalizacji moze powodowaé czestsze ujawnianie sie btedéw w kodzie. Jest tez bardzo
przydatne przy profilowaniu (patrz sekcja o valgrind). Wiecej o optymalizacjach:
file:///usr/local/share/doc/gcc-14-doc/gcc. html#0ptimize-Options|— link lokalny
https://gcc.gnu.org/onlinedocs/gcc/Optimize-0Options.html

Flaga -static moze powodowaé wykrywanie bledéw w programach ich pozbawionych (za-
wsze 1 gléwnie przez program valgrind). Dlatego (w duzym uproszczeniu) mozna te flage pominaé
na potrzeby testowania programu, o ile ona nie jest Zrédlem bledéw wykonania programu.

Istnieja jeszcze dwie bardzo przydatne flagi, choé¢ nie polecamy ich miesza¢ z opisanymi nizej
sposobami analizy programéw — powinny one byé¢ uzywane zupelnie niezaleznie od nich. Pierw-
sza z nich to -fsanitize=address, ktéra powoduje dodanie do programu kodu wykrywajacego
bledne obchodzenie sie z adresami. Po skompilowaniu programu z uzyciem tej flagi normalnie go
uruchamiamy — jesli problem zostanie wykryty, to dodany kod przerwie jego dzialanie i wypisze
stosowng informacje. Druga to -fsanitize=undefined, ktéra dziala analogicznie do poprzedniej,
ale wykrywa miejsca, w ktorych program moze zachowywacé sie w nieprzewidywalny sposob. Ko-
lejna polecana flaga to -D_GLIBCXX_DEBUG. Wiecej o takich flagach w gcc:
file:///usr/local/share/doc/gcc-14-doc/gcc.html#Instrumentation-Options — link lokalny
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options. html

2 valgrind

valgrind to potezne narzedzie stuzace m.in. do wykrywania btedéw i profilowania programéw.
Ponizej skupimy sie tylko na jego najprostszych zastosowaniach.

o

file:///usr/local/share/doc/gcc-14-doc/gcc.html#Debugging-Options
https://gcc.gnu.org/onlinedocs/gcc/Debugging-Options.html
file:///usr/local/share/doc/gcc-14-doc/gcc.html#Optimize-Options
https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
file:///usr/local/share/doc/gcc-14-doc/gcc.html#Instrumentation-Options
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html

XXXIII Ol, zawody Il stopnia — Usuwanie usterek z rozwiazan

Jesli skompilujemy program zgodnie z wyzej opisanymi wytycznymi (bez flagi -static), a na-
stepnie napiszemy w konsoli valgrind ./program < test.in, to dostaniemy czytelng informacje
o wiekszosci bledéw zwiazanych z obsluga pamieci. Warto tu jednak zaznaczyé, ze jesli stosujemy
dosé popularne ,zabezpieczenia” polegajace na stalym rozmiarze tablic MAX_N (albo n + 10) lub
innych podobnych zabiegach, to bltedy moga zostaé¢ wykryte dopiero przy duzych testach. Zre-
zygnowanie, przynajmniej na czas testow, z takich zabezpieczen, moze istotnie wpltynaé¢ zaréwno
na jakos$é testow, jak i programoéw. Nieplanowane odwolywanie sie do komérek tablicy, nawet jak
sa zaalokowane, czesto jest symptomem znacznie powazniejszego btedu programistycznego, ktory
objawi sie tylko przy specyficznych warunkach.

Bledy zglaszane przez program valgrind na pewno nie naleza do tych, ktére mozna lekcewazy¢
(poza $wiadomym ignorowaniem wyciekoéw pamieci). Prawie zawsze koncza sie one bledem wy-
konania programu na wiekszych testach lub po prostu nieprzewidywalnym dzialaniem programu.
Zazwyczaj to wlasnie tego typu bledy sa winne sytuacji, w ktorej program dziata réznie w réznych
srodowiskach uruchomienia (np. na réznych komputerach).

valgrind ma jeszcze dwie funkcjonalnosci, ktérym poswiecimy chwile. Pierwsza z nich to ana-
lizowanie zuzycia pamieci. Komenda valgrind --tool=massif ./program < test.in tworzy
plik massif* z analiza zuzycia pamieci Twojego programu. Aby wysSwietli¢ ja w czytelnej formie,
nalezy napisa¢ ms_print, a nastepnie poda¢ nazwe wlasnie stworzonego pliku. Przyktadowo:

$ ms_print massif.out.4313

Warto tu zaznaczy¢, ze ta analiza jest zazwyczaj bliska do tej, ktora przeprowadzamy na
sprawdzaczkach. Nie musi by¢ jednak ona identyczna. Ze wzgledu na sposéb zliczania pamieci na
sprawdzaczkach zazwyczaj massif wykrywa wieksze zuzycie pamieci o kilka MB (standardowo do
8) niz sprawdzaczki. Moze sie jednak zdarzy¢, ze wykryje mniejsze zuzycie niz system Olimpiady.

Do testow warto uzywaé pesymistycznych duzych testow (cho¢ niekoniecznie maksymalnych).
Jesli zbyt szybko program zakoniczy dziatanie, to analiza nie bedzie dokladna. Wiecej informacji
z przyktadami:
file:///usr/share/doc/valgrind/html/ms-manual.html| - link lokalny
http://valgrind.org/docs/manual/ms-manual.html

Druga ze wspomnianych funkcjonalnosci narzedzia valgrind to profilowanie czasu. Piszac
valgrind --tool=cachegrind ./program < test.in, tworzymy plik ze statystykami dzialania
programu (na danym tescie). Mozna je wyswietli¢, piszac kcachegrind, a nastepnie podajac
nazwe wlasnie stworzonego pliku (domyslnie cachegrind.out.*). Na przyklad:

$ kcachegrind cachegrind.out.4505

Warto tu podkreslié, ze analiza jest przeprowadzana na innym systemie niz sprawdzaczkowy
(w szczegolnosci nie ma oitimetool), wiec analizy czasow moga nie byé¢ doktadne. Niemniej, bar-
dzo wiele statystyk (jak np. liczba wywolan funkcji) bedzie dobrze odpowiadaé¢ temu, jak program
bedzie dziatal na sprawdzaczce. Wiecej informacji z przyktadami:
file:///usr/share/doc/valgrind/html/cl-manual.html| - link lokalny
http://valgrind.org/docs/manual/cl-manual.html

2.1 Profilowanie stosu — massif

Aby uzy¢ valgrinda do badania pamieci na stosie warto uzy¢ dodatkowych flag informacji. Do-
ktadniejsze wytlumaczenie znajduje sie ponizej, a najdokladniejsze w dokumentacji, ale czesto
zadziala nastepujace polecenie:

$ valgrind --tool=massif --stacks=yes --max-stackframe=1073741824 \
--main-stacksize=1073741824 ./program < test.in

file:///usr/share/doc/valgrind/html/ms-manual.html
http://valgrind.org/docs/manual/ms-manual.html
file:///usr/share/doc/valgrind/html/cl-manual.html
http://valgrind.org/docs/manual/cl-manual.html

XXXIII Ol, zawody Il stopnia — Usuwanie usterek z rozwiazan

Zgodnie z tym, co zostalo napisane w dokumentacji, domys$lnie valgrind mierzy tylko pamieé
alokowang poprzez malloc, calloc, realloc, memalign, new, new[]. Nie mierzy zatem pa-
mieci alokowanej przez niskopoziomowe funkcje takie jak mmap, mremap i brk oraz tej uzywanej
na stosie.

Oczywiscie, najprostszym obejSciem jest przej$cie na uzywanie pamieci alokowanej dynamicznie
na przyktad za pomoca konteneréw z stdliba np. std::vector<int> table_name(size) zamiast
int table_name[size].

Jedli jednak zmniejszenie ilosci pamieci uzywanej na stosie do pomijalnej wielkosci nie jest
preferowanym rozwigzaniem, mozna wtaczy¢ uwzglednianie pamieci alokowanej na stosie. Stuzy
do tego flaga massif -stacks=yes. Zwolni to jednak istotnie czas profilowania.

$ valgrind --tool=massif --stacks=yes ./program < test.in

To jednak moze nie wyswietla¢ calej uzytej pamieci. Rozwiazaniem tej niedogodnosci jest
manipulowanie warto$cia -max-stackframe. Najczeiciej wystarczy te wartosé ustawié¢ na odpo-
wiednia duza (w stosunku do pamieci alokowanej na stosie przez program).

$ valgrind --tool=massif --stacks=yes --max-stackframe=1073741824 \
./program < test.in

Wiecej o profilowaniu stosu:
file:///usr/share/doc/valgrind/html/manual-core.html — link lokalny
http://valgrind.org/docs/manual/manual-core.html

Jesli potrzebne jest wiele pamieci, to warto tez zmieni¢ rozmiar stosu.

$ valgrind --tool=massif --stacks=yes --max-stackframe=1073741824 \
--main-stacksize=1073741824 ./program < test.in

Wiecej mozliwosci opisanych jest w dokumentacji. Warto tu jedynie dodaé, ze valgrind przyj-
muje zazwyczaj duzo zatozeri, jak choéby to, ze na poczatku stos jest pusty.

3 gdb

Jesli program koriczy sie btedem wykonania lub dziala w nieprzewidywalny dla nas sposob oraz
wszystkie metody wykrywania bledéw opisane powyzej zawiodly, warto siegnaé¢ po ostateczna
bron — debugger. Jest to narzedzie stuzace do wykonywania programéw w sposéb krokowy. Wiele
srodowisk programistycznych posiada wbudowany debugger, czesto bedacy naktadka na jakis nie-
zalezny od S$rodowiska; ponizej opiszemy podstawowe funkcjonalnosci debuggera gdb, ktory nie
wymaga uzycia zadnego konkretnego srodowiska programistycznego.

gdb ma wiele funkcjonalnosci, ale my skupimy sie na kilku najbardziej podstawowych jego
mozliwo§ciach. Uruchamiamy go za pomoca polecenia gdb ./program (standardowo po skompi-
lowaniu z opcja typu -g), a nastepne komendy wpisujemy juz w debuggerze. Oto (niepelna) lista
dostepnych komend:

e run < test.in — uruchamia program i przekazuje mu wskazany test na standardowe wejscie
(r<test.in).

e break xx — ustawia break point na linii zz (b xx).
e break foo — ustawia break point na funkcji foo (b foo).

e step — przechodzi do nastepnej linii programu, przy czym wchodzi do wnetrza wywolan
funkeji (s).

3

file:///usr/share/doc/valgrind/html/manual-core.html
http://valgrind.org/docs/manual/manual-core.html

XXXIII Ol, zawody Il stopnia — Usuwanie usterek z rozwiazan

e next — przechodzi do nastepnej linii programu, przy czym nie wchodzi do wnetrza wywotan
funkeji (n).

e continue — wznawia dziatanie programu po przerwaniu (c).
e print var — wypisuje warto$¢ zmiennej var (p var).

e backtrace — wypisuje stos wywotan funkcji (bt).

e list xx — wypisuje kawalek programu, bliski linii xx (1 xx).

Po wpisaniu komendy naciskamy Enter. W nawiasach podaliémy opcje skrécone komend. Przy-
ktadowy przebieg krokowego wykonania programu po wywolaniu gdb ./program:

b main 7% program ma sie zatrzymaé po dojsSciu do funkcji main
r < test.in ¥ uruchomienie na teScie; program zatrzymuje sie na funkcji main
n

n

P x % wypisuje wartoS¢ zmiennej x

s % wchodzi do wnetrza funkcji, na ktdérej znajduje sie¢ wykonanie krokowe
n

n

Najciekawsza z powyzszych funkeji to backtrace (bt). Jej najlatwiejsze, najpopularniejsze
uzycie to uruchomienie programu, poczekanie az zakoniczy sie btedem wykonania, i wywotanie jej,
aby dowiedzie¢ si¢ gdzie i dlaczego program zakoriczy! sie btedem (albo przynajmniej w jakich
okolicznosciach). Wiecej mozna znalez¢ w dokumentacji: o przerywaniu dzialania:
file:///usr/share/doc/gdb-doc/html/gdb/Set-Breaks.html — link lokalny
https://sourceware.org/gdb/onlinedocs/gdb/Set-Breaks.html#Set-Breaks
o krokowym wykonywaniu programu:
file:///usr/share/doc/gdb-doc/html/gdb/Continuing-and-Stepping.html|— link lokalny
https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html
o backtrace:
file:///usr/share/doc/gdb-doc/html/gdb/Backtrace.html| - link lokalny
https://sourceware.org/gdb/onlinedocs/gdb/Backtrace.html

Bardzo pomocne mogg sie okaza¢ watchpoints, stuzace do wykrywania, kiedy wartosé¢ zmien-
nej lub wartosé pod konkretnym adresem ulega zmianie lub jest odczytywana. Uruchamiamy je
za pomoca komendy watch var (w skrocie w var) i kiedy warto$é zmiennej var sie zmienia, gdb
nas o tym informuje. Wiecej na ten temat mozna przeczytaé¢ w dokumentacji:
file:///usr/share/doc/gdb-doc/html/gdb/Set-Watchpoints.html|— link lokalny
https://sourceware.org/gdb/onlinedocs/gdb/Set-Watchpoints.html

file:///usr/share/doc/gdb-doc/html/gdb/Set-Breaks.html
https://sourceware.org/gdb/onlinedocs/gdb/Set-Breaks.html#Set-Breaks
file:///usr/share/doc/gdb-doc/html/gdb/Continuing-and-Stepping.html
https://sourceware.org/gdb/onlinedocs/gdb/Continuing-and-Stepping.html
file:///usr/share/doc/gdb-doc/html/gdb/Backtrace.html
https://sourceware.org/gdb/onlinedocs/gdb/Backtrace.html
file:///usr/share/doc/gdb-doc/html/gdb/Set-Watchpoints.html
https://sourceware.org/gdb/onlinedocs/gdb/Set-Watchpoints.html

	Kompilacja w C++
	valgrind
	Profilowanie stosu – massif

	gdb

